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ABSTRACT 
Clustering on uncertain data, one of the essential tasks in mining uncertain data, posts significant challenges on both 

modeling similarity between uncertain objects and developing efficient computational methods. The previous 

methods extend traditional partitioning clustering methods like k-means and density-based clustering methods like 

DBSCAN to uncertain data, thus rely on geometric distances between objects. Such methods cannot handle 

uncertain objects that are geometrically indistinguishable, such as products with the same mean but very different 

variances in customer ratings. Surprisingly, probability distributions, which are essential characteristics of uncertain 

objects, have not been considered in measuring similarity between uncertain objects. In this project, we 

systematically model uncertain objects in both continuous and discrete domains, where an uncertain object is 

modeled as a continuous and discrete random variable, respectively. We use the well-known Kullback-Leibler 

divergence to measure similarity between uncertain objects in both the continuous and discrete cases, and integrate it 

into partitioning and density-based clustering methods to cluster uncertain objects. 
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    INTRODUCTION 
The previous studies on clustering uncertain data are largely various extensions of the traditional clustering 

algorithms designed for certain data. As an object in a certain data set is a single point, the distribution regarding the 

object itself is not considered in traditional clustering algorithms. Thus, the studies that extended traditional 

algorithms to cluster uncertain data are limited to using geometric distance-based similarity measures, and cannot 

capture the difference between uncertain objects with different distributions. Specifically, three principal categories 

exist in literature, namely partitioning clustering approaches, density-based clustering approaches, and possible 

world approaches. The first two are along the line of the categorization of clustering methods for certain data, the 

possible world approaches are specific for uncertain data following the popular possible world semantics for 

uncertain data. As these approaches only explore the geometric properties of data objects and focus on instances of 

uncertain objects, they do not consider the similarity between uncertain objects in terms of distributions. 

 

LITERATURE SURVEY 
Our mental representations of the world are formed by processing large numbers of sensory inputs including, for 

example, the pixel intensities of images, the power spectra of sounds, and the joint angles of articulated bodies. 

While complex stimuli of this form can be represented by points in a high-dimensional vector space, they typically 

have a much more compact description. Coherent structure in the world leads to strong correlations between inputs 

(such as between neighboring pixels in images), generating observations that lie on or close to a smooth low-

dimensional manifold. To compare and classify such observations in effect, to reason about the world depends 

crucially on modeling the nonlinear geometry of these low-dimensional manifolds. 

Scientists interested in exploratory analysis or visualization of multivariate data (1) face a similar problem in 

dimensionality reduction. The problem involves mapping high-dimensional inputs into a low dimensional 

“description” space with as many coordinates as observed modes of variability. Previous approaches to this problem, 
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based on multidimensional scaling (MDS), have computed embeddings that attempt to preserve pairwise distances 

or generalized disparities between data points; these distances are measured along straight lines or, in more 

sophisticated usages of MDS such as Isomap, along shortest paths confined to the manifold of observed inputs. 

Here, we take a different approach, called locally linear embedding (LLE) that eliminates the need to estimate pair 

wise distances between widely separated data points. 

Unlike previous methods, LLE recovers global nonlinear structure from locally linear fits. The LLE algorithm, is 

based on simple geometric intuitions. Suppose the data consist of N real-valued vectors XWi, each of dimensionality 

D, sampled from some underlying manifold. Provided there is sufficient data (such that the manifold is well-

sampled), we expect each data point and its neighbors to lie on or close to a locally linear patch of the manifold. We 

characterize the local geometry of these patches by linear coefficients that reconstruct each data point from its 

neighbors. 

The purpose of any clustering technique is to evolve a K partition matrix of a data set X in RN, representing its 

partitioning into a number, say K, of clusters (C1; C2; . . . ; CK). The partition matrix may be represented as U the 

membership of pattern xj to clusters Ck. Clustering techniques broadly fall into two classes, partitional and 

hierarchical. K-Means and single linkage are widely used techniques used in the domains of partitional and 

hierarchical clustering, respectively. 

The two fundamental questions that need to be addressed in any typical clustering system are: How many clusters 

are actually present in the data and how real or good is the clustering itself. That is, whatever the clustering method 

may be, one has to determine the number of clusters and also the goodness or validity of the clusters formed. The 

measure of validity of the clusters should be such that it will be able to impose an ordering of the clusters in terms of 

its goodness. Milligan and Cooper have provided a comparison of several validity indices for data sets containing 

distinct non overlapping clusters while using only hierarchical clustering algorithms. Meil_a and Heckerman 

provide a comparison of some clustering methods and initialization strategies. Some more clustering algorithms may 

be found. In this paper, we aim to evaluate the performance of four validity indices, namely, the Davies-Bouldin 

index, Dunn’s index, Calinski- Harabasz index, and a recently developed index I, in conjunction with three 

clustering algorithms viz. the well-known K-means and single linkage algorithms, as well as a recently developed 

simulated annealing (SA) based clustering scheme. The number of clusters is varied from Kmin to Kmax for K-

means and the simulated annealing-based clustering algorithms, while, for single linkage algorithm (which 

incorporates automatic variation of number of clusters), the partitions in this range are considered. 

 

PROPOSED SYSTEM 
In this project, we consider uncertain objects as random variables with certain distributions. We consider both the 

discrete case and the continuous case. In the discrete case, the domain has a finite number of values, for example, 

the rating of a camera can only take a value. In the continuous case, the domain is a continuous range of values, for 

example, the temperatures recorded in a weather station are continuous real numbers. Directly computing KL 

divergence between probability distributions can be very costly or even infeasible if the distributions are complex, as 

will be shown in Section 3. Although KL divergence is meaningful, a significant challenge of clustering using KL 

divergence is how to evaluate KL divergence efficiently on many uncertain objects. To the best of our knowledge, 

this project is the first to study clustering uncertain data objects using KL divergence in a general setting. We make 

several contributions. We develop a general framework of clustering uncertain objects considering the distribution 

as the first class citizen in both discrete and continuous cases. Uncertain objects can have any discrete or continuous 

distribution. We show that distribution differences cannot be captured by the previous methods based on geometric 

distances. We use KL divergence to measure the similarity between distributions, and demonstrate the effectiveness 

of KL divergence in both partitioning and density-based clustering methods. 

 

CONCLUSION 
we explore clustering uncertain data based on the similarity between their distributions. We advocate using the 

Kullback-Leibler divergence as the similarity measurement, and systematically define the KL divergence between 

objects in both the continuous and discrete cases. We integrated KL divergence into the partitioning and density-

based clustering methods to demonstrate the effectiveness of clustering using KL divergence. To tackle the 

computational challenge in the continuous case, we estimate KL divergence by kernel density estimation and 

employ the fast Gauss transform technique to further speed up the computation. The extensive experiments confirm 

that our methods are effective and efficient. The most important contribution of this project is to  introduce 
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distribution difference as the similarity measure for uncertain data. Besides clustering, similarity is also of 

fundamental significance to many other applications, such as nearest neighbor search. In the future, we will study 

those problems on uncertain data based on distribution similarity. 
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